not throw out a useful pedagogical tool because harm can be done with it. Albee seems not to recognize that the IQ can have any value whatsoever. In particular, he does not consider that it is only by means of the IQ that it has been possible to show how great the damage of a deficient environment can be to the mind of the growing child. That discovery surely is one of the great achievements of modern psychology, and it could not have been achieved without means of quantification of mental growth.

In this context, let me say also that I did not assert or imply that all slum children are intellectually deprived. For the preschool child at least, one intelligent, responsive parent can make up for a great lack of material things. Success stories such as Albee's do exist, but he surely does not suggest that they are representative. What about the other children in the area when he was 3, 4, or 5 years old? Were they, as he evidently was, exposed to the intellectual stimulation needed for optimal growth? If instead they ended up with low IQs, it is not to the point to say that they were able to "ride buses, make change, play complicated card games, and survive in a complex social world" (p. 386). How were they at algebra? Or at reading books, or even the daily newspapers?

REFERENCES
Hebb, D. O. Open letter: To a friend who thinks the IQ is a social evil. American Psychologist, 1978, 33, 1143-1144. (Comment)

Try Again, Dr. Albee
R. J. Herrnstein
Harvard University

Albee (April 1980) attributes to H. H. Goddard, the early intelligence tester, the following statement about immigrants to America: "83% of the Jews, 80% of the Hungarians, 79% of the Italians, and 87% of the Russians were "feeble minded"" (p. 387). This is a quotation I have seen repeatedly in recent years in newspapers, popular magazines, court decisions, and occasionally even scholarly publications such as the American Psychologist. The quotation is offered as prima facie evidence of the cultural bias, if not patent racism, of IQ tests, as in Albee's Comment. On every count, the evidence is specious.

Albee cites Kamin (1974), not Goddard (1913), for the quotation. The sentence in question does appear in Kamin, but not as a quotation. It is Kamin's sentence, supposedly telling us what Goddard claimed to have found when he tested a sample of immigrants at Ellis Island. Kamin cites a 1913 article in the old Journal of Psycho-Asthenics, the precursor of the American Journal of Mental Deficiency. In fact, the 2½-page article cited by Kamin contains no data at all, not a single datum about groups of immigrants nor anyone else, but only a suggestion that "the Binet test might be used even with immigrants" (Goddard, 1913, p. 107). Let us, however, give Kamin the benefit of the doubt and assume that something like the cited proportions of retardation can be found, or read into, some other paper of Goddard's. What then?

Goddard had adapted and translated the early Binet tests (most likely the 1908 and 1911 versions) into English. One salient point about the Binet tests is that they predated the IQ in any form. Not until Stern's (1912) book (see Herrnstein & Boring, 1965; for the relevant excerpt from Stern) was the concept formulated in principle and not until Terman's (1916) first Stanford-Binet did it receive significant application. Mental retardation post-IQ is therefore not the same statistical entity as it was pre-IQ. Furthermore, Terman (1916), commenting on Goddard's translation of the Binet test, noted its implausible low end for adults: "Of 104 adult individuals testing by the Stanford revision between 12 and 14 years, and who were therefore somewhat above the level of feeble-mindedness as that term is usually defined, 50 per cent tested below 12 years (i.e., feeble-minded by a common cutting point) by the Goddard revision" (p. 62). Terman further commented that on Binet scales generally, "the proportion of feeble-mindedness among adult subjects was greatly overestimated" (p. 63).

The overestimation of retardation that Terman was discussing was for native English-speaking populations, not immigrants, who were at an obvious disadvantage on English-language tests, even the so-called performance tests of the time. The special difficulties of non-English-speaking populations were explicitly noted in the massive report on testing by the National Academy of Sciences after World War I. I mention this report because it was edited by Robert M. Yerkes (1921), whom Albee (and Kamin) also taint with the brush of ethnocentrism or worse. Yet, in the academy's report, it is noted (p. 701ff.) that tested intelligence among immigrants rises as a function of years resident in the United States. Says the anonymous writer with due caution, "It is not possible to state whether the difference [i.e., the rise in scores] is caused by the better adaptation of the more thoroughly Americanized group to the situation of the examination or whether some other factor is operative" (p. 704).

In summary, the familiar sentence attributed to Goddard on excessive retardation in the IQs of immigrants is (a) not Goddard's sentence, but Kamin's; (b) not found in any form in the reference to Goddard made by Kamin; (c) almost certainly not based on IQ scores, assuming Kamin did find something relevant somewhere in Goddard; and (d) probably based on a long-gone test known by Terman and others to overestimate adult retardation seriously even in native American populations. Dr. Albee said he was trying to set the historical record right; he could surely have done a better job than he did in his Comment.

REFERENCES
Comment on “Psychological Research and Energy Policy”

Richard A. Winett
E. Scott Geller
Virginia Polytechnic Institute and State University

As behavioral researchers with 20 years of collective experience in environmental protection and energy conservation, we applaud Stern and Gardner (this issue) for indicating areas in which psychologists can have a potentially large impact on the energy situation. Their article is particularly valuable in showing that in almost every aspect of energy systems there is need for psychological input and that most programs and policies for energy conservation and environmental protection have unfortunately been formulated without any consideration of psychosocial factors.

While we are in general agreement with Stern and Gardner’s plea for a broad interdisciplinary approach and for input by psychologists into energy policy, we disagree with some of their specific points. In general, we feel that the distinction they make between curtailment and efficiency strategies may often be artificial and non-constructive; that the use of these terms carries, at this point, some unfortunate connotations; that they have underestimated savings from “curtailment strategies”; and, indeed, that the solar future they describe (and evidently endorse) at the end of their article will depend on a balanced mix of curtailment and efficiency practices, repetitive behaviors, and “one-shot” actions.

The distinction between curtailment and efficiency can be a cloudy one. Stern and Gardner appear to be using the term efficiency only in a limited engineering sense, that is, as alteration or replacement of some device, machine, or system in order to use less energy. However, in a broader context, many curtailment strategies also represent more efficient use of energy-dependent systems. For example, setting back the thermostat in the winter when the home is unoccupied or when people are asleep is a more efficient way to use a heating system. Further, commuting to work by bicycle is an extremely energy-efficient transportation modality, since the main energy source is human power, a product of calories from food, which is a renewable resource.

In the past, conservation has been closely identified with the notions of curtailing and sacrifice (recall former president Carter’s early energy speeches), a labeling process that is supported by Stern and Gardner’s analysis. As we just noted, however, this is unfortunate because many conservation strategies can easily be conceptualized instead as using existing energy systems more efficiently. In recent research on comfort and energy conservation in the residential sector, for example, it has been consistently found that people set their thermostats inappropriately, generally leaving the thermostat set at one temperature throughout the day and night (Winett et al., in press). Residents in these projects were instructed, prompted, and reinforced for using their thermostats and electricity for space heating in a more efficient way, which meant gradually setting back the thermostat 1°F. a week when they were home and setting back the thermostat 10°F. (or more) at night and when their homes were not occupied. Comparable strategies were used in the summer in addition to having some residents substitute fans for air conditioning, fans being a more efficient way to space cool a home during the evening hours than air conditioning in most parts of the country (e.g., where the mean low summer temperature is in the mid-70°F range or lower).

With these simple, repetitive behavioral strategies, overall electricity consumption was reduced 15% to 20%, and electricity used for heating and cooling was reduced by 20% to 40%. These energy savings are much higher than those estimated by Stern and Gardner in Table 3. Despite the above changes in the home environment, residents regularly reported that they were still “comfortable,” and data indicated that they maintained these practices (see Winett et al., in press). Interestingly, thermostat-change strategies were always described to residents as part of an “energy-efficient lifestyle.” Further, the temperatures that people evidently were able to adapt to comfortably, and particularly the set-backs used, were far below those shown in Table 3 in Stern and Gardner. Highly accurate recording devices inside the homes indicated that the temperature (in the winter) was a mean of about 62.5°F. when people were home, with day and night set-backs placing the temperature at a low of about 58.5°F. Thus, more efficient use of the thermostat can play a major role in conservation in buildings and, indeed, is probably a necessary adjunct to retrofitting strategies (i.e., weatherization).

Additional support for the present position comes from residential energy studies, which have consistently found that energy consumption in the winter and summer can differ two- or threefold between homes with identical design and heating and cooling systems and occupied by people with similar demographic characteristics. Even when identical homes are then properly retrofitted (and, hence, energy consumption reduced), the proportional difference between energy usage in the homes often remains the same (see Socolow, 1978). Thus, neglecting the behavioral component in the residential sector by only focusing on retrofitting would be a mistake.

There are also many conservation practices that, in and of themselves, require both repetitive behaviors and